Question

Given f(x)13f(x3)=x,f\left ( x \right )-\frac{1}{3}f\left ( \frac{x}{3} \right )=x,
find f(x)f\left ( x \right ).


Alternative solution:

We derive the following equations,
f(x)13f(x3)=xf\left ( x \right )-\frac{1}{3}f\left ( \frac{x}{3} \right )=x
131f(x3)132f(x32)=x32\frac{1}{3^{1}}f\left ( \frac{x}{3} \right )-\frac{1}{3^{2}}f\left (\frac{x}{3^{2}}\right )=\frac{x}{3^{2}}
132f(x32)133f(x33)=x34\frac{1}{3^{2}}f\left ( \frac{x}{3^{2}} \right )-\frac{1}{3^{3}}f\left (\frac{x}{3^{3}}\right )=\frac{x}{3^{4}}
\vdots
13nf(x3n)13n+1f(x3n+1)=x32n\frac{1}{3^{n}}f\left ( \frac{x}{3^{n}} \right )-\frac{1}{3^{n+1}}f\left (\frac{x}{3^{n+1}}\right )=\frac{x}{3^{2n}}
where nNn\in \mathbb{N} .

By adding up both sides of the equation, we obtain
f(x)13n+1f(x3n+1)=x+x32+x34+...+x32nf\left ( x \right )-\frac{1}{3^{n+1}}f\left (\frac{x}{3^{n+1}}\right )=x+\frac{x}{3^{2}}+\frac{x}{3^{4}}+...+\frac{x}{3^{2n}}
Taking n+n\to +\infty ,
f(x)=x1132=98xf\left ( x \right )=\frac{x}{1-\frac{1}{3^{2}}}=\frac{9}{8}x


Solution:

From the original equation, let x=0x=0, we obtain f(0)=0f\left ( 0 \right )=0
Construct α\alpha such that f(x)+αx=13[f(x3)+αx3]f\left ( x \right )+\alpha\cdot x=\frac{1}{3}\left [ f\left ( \frac{x}{3} \right )+\alpha\cdot \frac{x}{3} \right ]

We attain α =98\alpha\ = -\frac{9}{8}

Let g(x)=f(x)98xg\left ( x \right ) = f\left ( x \right )-\frac{9}{8}x, therefore

g(x)=13g(x3)==13ng(x3n),nZ+g\left ( x \right ) = \frac{1}{3}g\left ( \frac{x}{3} \right )=\cdots=\frac{1}{3^{n}}g\left ( \frac{x}{3^{n}} \right ), n\in \mathbb{Z^{+}}

If n+n\to +\infty ,

limn+g(x)=g(0)=f(0)0=0\lim_{n \to +\infty}g\left ( x \right )=g\left ( 0 \right )=f\left ( 0 \right )-0=0

Thus, f(x)=98xf\left ( x \right )=\frac{9}{8}x

You’ve successfully subscribed to Benny
Welcome back! You’ve successfully signed in.
Great! You’ve successfully signed up.
Your link has expired
Success! Check your email for magic link to sign-in.